A characterisation of Hilbert spaces via orthogonality and proximinality
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولProximinality and co-proximinality in metric linear spaces
As a counterpart to best approximation, the concept of best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi in 1972. Subsequently, this study was taken up by many researchers. In this paper, we discuss some results on the existence and uniqueness of best approximation and best coapproximation when the underlying spaces are metric linear spaces. A new kind of ...
متن کاملProximinality in Geodesic Spaces
Let X be a complete CAT(0) space with the geodesic extension property and Alexandrov curvature bounded below. It is shown that if C is a closed subset of X , then the set of points of X which have a unique nearest point in C is Gδ and of the second Baire category inX. If, in addition,C is bounded, then the set of points ofX which have a unique farthest point in C is dense in X. A proximity resu...
متن کاملRemotality and proximinality in normed linear spaces
In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.
متن کاملLinear Orthogonality Preservers of Hilbert Bundles
A C-linear map θ (not necessarily bounded) between two Hilbert C-modules is said to be ‘orthogonality preserving’ if 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0()-module E into another Hilbert C0()-module F that satisfies a weaker notion of C0()-linearity (called ‘localness’), then θ is bounded and there exists φ ∈ Cb()+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2005
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700038053